PROGRAMME MANUAL

BACHELOR OF SCIENCE HONOURS IN APPLIED BIOLOGY

DEPARTMENT OF BIOLOGICAL SCIENCES

FACULTY OF APPLIED SCIENCES

SOUTH EASTERN UNIVERSITY OF SRI LANKA

2018

Course Developer: Mr. EMJM Rizvi, Snr. Lecturer Gr I in Botany

Subject matter contributors:

Mr. EMJM Rizvi, Snr. Lecturer Gr I in Botany
Mr. AN Ahmed, Snr. Lecturer Gr. I in Agric.
Ms. V. Santhanam, Snr. Lecturer Gr. I in Zoology (Retd.)
Dr. MIS Safeena, Snr. Lecturer Gr. I in Botany
Dr. V. Sujarajini Lect. (Prob.) in Zoology

CONTENTS

	Page
1. Introduction	1
2. Aim and objectives	1
2.1. Aim	1
2.2. Objectives	1
2.3. Graduate profile of the B.Sc. (honours) study programme	2
3. Course identity	2
4. Course requirements	2
5. Eligibility requirements to follow the honours degree in applied biology	3
6. Revert or withdrawal from the honours programme	4
7. Calculation grade point average (gpa)	4
8. Award of bachelor of science honours in applied biology	4
8.1. Award of class:	5
9. Summary of course units	6
10. Detailed syllabuses	8

BACHELOR OF SCIENCE HONOURS IN APPLIED BIOLOGY

1. INTRODUCTION

Biology is a rapidly developing subject resulting in the development of new sub-disciplines and sub-disciplines turning into major disciplines. Applied Biology is making use of basic biological knowledge for the purpose of fulfilling human needs.

The global and local economy is fast changing into a knowledge-based economy. Economic and social development involves biological applications. Consequences of development in turn affect the environment, ecology and finally life. Bio-products (bio-fuel, bio-fertilizer etc.), bio-remediation, eco-friendly approaches etc. have become terms of common man indicating the importance of the subject. Thus, the demand both locally and globally would be high for personnel with advanced knowledge in the subject. In this regard the Department of Biology will offer a four year degree named 'B.Sc. in Applied Biology (Special)' from the academic year 2009/2010. Due to the breadth of the subject it is not possible to cover all different applied biological discipline in a four year degree programme. Thus the proposed Degree Programme comprises selected areas of Applied Biology which have a greater demand i.e. agricultural technology, applied microbiology, natural resource management and environmental applications.

This course with value addition by the other features of our academic programme will provide an excellent ground for the graduates to be competent and excel in production or service based careers or further studies in a relevant biological discipline leading to academic or research careers.

2. AIM AND OBJECTIVES

2.1. Aim

To produce graduates with enhanced employable potential in areas of applied biology which have a greater demand regionally, nationally and globally.

2.2. Objectives

On completion of the course of study the graduates who will be equipped with a sound background on the principles and particular areas of applied biology are expected to be competent:

- in knowledge and skills in basic and the particular areas of applied biology.
- to engage in further studies in a relevant biological discipline leading to academic or research careers.
- to excel in production or service based careers.
- in other generic skills, thus adaptable to even a non-discipline based career.

2.3. GRADUATE PROFILE OF THE B.Sc. (HONOURS) STUDY PROGRAMME

- 1. Competent/specialized in a subject with an advanced knowledge and understanding of the core aspects of the subject.
- 2. Capability to critically analyze and innovatively solve problems.
- 3. Apply relevant experimental methods and modern technologies in research.
- 4. Be an effective oral and written communicator in the subject.
- 5. Perform successfully as an individual and as a team member or a team leader in multi-cultural and multi-disciplinary settings.
- 6. Demonstrate ability to apply academically gained knowledge, skills and commitment in pursuing group work in a wider context.
- 7. Use information technology (IT) for applications and to search, evaluate, utilize, share and create content.
- 8. Be a social and environment friendly professional, entrepreneur/manager.
- 9. Possess a strong intellectual integrity, ethical values, commitment and selfevaluation in completing responsibilities.
- 10. Be more attentive to the community, national and global needs and demands.
- 11. Be aware of own culture and values and appreciate and tolerate other cultures.
- 12. Be equipped to pursue higher studies, compete in national and global arena, and to engage in independent and life-long learning to achieve personal and career goals.

3. COURSE IDENTITY

Name of the Degree: Bachelor of Science (Special) Degree in Applied BiologyDepartment of Study: Dept. of Biological ScienceDuration of the course: 8 semesters (4 academic years)Medium of instruction: English

4. COURSE REQUIREMENTS

As per the UGC requirement, a student has to complete successfully a total of 120 credits in four academic years of which a minimum of 72 credits should be from the subject of specialization. Out of the minimum of 72 credits, 56 credits must be at level 3 and 4. Students have the option of selecting course units to the value of a maximum 33 per level as indicated in table 1.

			<u>069</u>				
	Number of credits						
Level	Biology (General)	Applied Biology	Other main subjects (X)	Compulsory Courses ¹	Elective Courses ²	Auxiliary Courses ³	Total (except auxiliary
1	08	-	18	02	01-03	02	29-31
2	09	-	18	-	03-04	03	30-31
3	09	18	-	-	04-05	01	31-32
4		24 06 (Research project)	_	_	_	-	30
Total	26	48	36	02	08-12	06	120-124

Table 1: Summary of credit requirements for the Bachelor of Science

 Honours in Applied Biology

- 1. Supplementary courses **students must offer and successfully complete** to be eligible for the degree. The grades obtained will be included for the calculation of Grade Point Average (GPA).
- 2. Supplementary courses **students can select from among the available (with the consent of the Deaprtment) and successfully complete** to be eligible for the degree. The grades obtained will be included for the calculation of GPA.
- 3. Supplementary courses **students must offer** and successfully complete to be eligible for the degree. The grades obtained will **not** be included for the calculation of GPA.

Note: Some of the electives offered by the other departments too may be considered as comparable to main biology course units and thus would be considered to make up the minimum number of credit requirement (72 credits) of subject of specialization. Students should consult the Department of Biology in selecting electives.

5. ELIGIBILITY REQUIREMENTS TO FOLLOW THE HONOURS DEGREE IN APPLIED BIOLOGY

At the end of level 2, students who have offered Biology as a main subject in levels 1 and 2, are eligible to opt for the Honours programme in Applied Biology provided that they have met the following minimum requirements:

- a. obtained a GPA of at least 2.50 from all credits.
- b. obtained a GPA of at least **2.70** for all course units of biology.

The number of students admitted to the honours degree programme will be limited and decided by the department of biology depending on the resources available. In case there are

more applicants than can be admitted, only the most eligible candidates will be selected based on the order of rank of their GPA and the performance in an interview.

6. REVERT OR WITHDRAWAL FROM THE HONOURS PROGRAMME

If a student wants to revert to the general degree programme, he/she should do so before the commencement of Level IV. On the other hand, if the department of biology finds that a student is unable to reach the expected standards, he/she will be requested to revert to a general degree programme.

Such a student would be eligible for the General Degree if he/she has obtained the minimum requirements to be eligible for the General Degree as stipulated in the respective 'undergraduate student guide'. In such cases the special course units followed will be considered to fulfill the credit requirement for the General Degree.

7. CALCULATION GRADE POINT AVERAGE (GPA)

GPA is the credit weighted arithmetic mean of all Grade Points obtained by a student for the course units he/she completed excluding auxiliary courses. This will be calculated for the second decimal place according to the following formula:

$$GPA = \sum G_i N_i / \sum N_i$$

where, G_i is the grade point of the ith course unit, N_i is the number of credits belonging to the ith course unit.

In case, a student has successfully completed more credits than the minimum credit requirements (120) the grade points obtained for the main courses and the best grade points among the elective courses followed by him/her will be considered for GPA calculation.

8. AWARD OF BACHELOR OF SCIENCE HONOURS IN APPLIED BIOLOGY

To be eligible for the B. Sc. (Special) degree in Applied Biology, a student should have completed a total of **120 credits**, excluding Enhancement /Auxiliary course units and of this a minimum of 72 credits must be in Applied Biology and Biology. Moreover, a student should have obtained:

- (a) Obtained a minimum GPA of **2.00**,
- (b) Obtained no **E** grades in any course units within the minimum of total credit requirement of subject of specialization,

- (c) Obtained no E grades in enhancement/auxiliary courses,
- (d) Completed the degree programme within **Six** academic years except for a valid medical reason acceptable to the faculty board and the senate.

8.1.AWARD OF CLASS:

In addition to the above requirements, award of class will be decided by the board of examiners using the following criteria as guideline.

First Class:

- a. Obtained a minimum GPA of **3.70**,
- b. Completed the relevant requirements within a period of **four** consecutive academic years except for a valid medical reason acceptable to the faculty board and the senate.

Second Class (Upper Division):

- a. Obtained a minimum GPA of **3.30**,
- b. Completed the relevant requirements within a period of **four** consecutive academic years except for a valid medical reason acceptable to the faculty board and the senate.

Second Class (Lower Division):

- a. Obtained a minimum GPA of 3.00,
- b. Completed the relevant requirements within a period of **four** consecutive academic years except for a valid medical reason acceptable to the faculty board and the senate.

9. SUMMARY OF COURSE UNITS

 Table 2: Biology course units offered for the general degree programme

Biology					
			No. of Hours		
Course Code	Course Title	Credit Value*	Lect. & Tute.	Lab./Field Work	
BLM 11012	Principles of Biology	2 (2)	22	24	
BLM 11022	Biological Chemistry	2 (2)	23	21	
BLM 12032	Fundamentals of Ecology	2 (2)	23	21	
BLM 12042	Fundamentals of Microbiology	2 (2)	22	24	
BLM 21012	Form and Functions of organisms	2 (1)	22	24	
BLM 21021	Ecosystems of Sri Lanka: Ecology, Conservation and Management	1 (1)	13	06	
BLM 21031	Field Ecology	1 (1)	10	15	
BLM 22043	Molecular Genetics and Biotechnology	3 (3)	33	24	
BLM 22052	Animal Behaviour	2	22	21	
BLM 31013	Horticulture	3 (3)	38	21	
BLM 31022	Applied Entomology	2	22	24	
BLM 32032	Aquaculture	2	22	24	
BLM 32042	Applied Parasitology	2	23	21	
	Total Credits	26 (17)			

* Numbers in brackets indicate the credit weight of botany-related credits.

				0	Notio	onal ho	ours	
Level	Semester	Code	Title	Credit value	Lecture	Lab/field	self	Teaching learning methods *
		BLS 00011	Animal Breeding	01	11	12	27	1,2,5,7
		BLS 00021	Animal Husbandry	01	11	12	27	1,2,5,7
		BLS 00032	Advanced parasitology and vector biology	02	22	16	62	1,2,3,4,6,11
		BLS 00042	Apiculture	02	22	16	62	1,2,3,5,6
		BLS 00053	Economic Marine Biology	03	33	36	81	1,2,5,6,7,11
		BLS 00063	Marine Bio-resources and Management	03	33	36	81	1,2,5,6,7,11
		BLS 00072	Natural Resource Management	02	30	-	70	1,2,6,7,11
		BTS 00073	Plant Pathology	03	30	45	75	1,2,4,6,8,10,11
	Ι	BTS 00092	Enzymology	02	22	16	62	1,2,4,6,7
or	or	BTS 00102	Bioinformatics	02	22	16	62	1,2,3,4,6
0.	01	BTS 00112	Analytical Techniques	02	22	24	54	1,4,6,9
IV	II	BTS 00122	Post-Harvest Technology of Fruits, Vegetables and Grains	02	20	20	60	1,2,4,5,6,7,11
		BTS 00132	Plant Tissue Culture	02	25	15	60	1,2,4,7,8,9,11
		BTS 00142	Plant Breeding	02	22	16	62	1,2,3,4,5,6
		BTS 00152	Environmental Microbiology	02	22	16	62	1,2,3,4,5,6,9
		BTS 00162	Industrial and Food Microbiology	02	22	16	62	1,2,3,4,5,6,9
		BTS 00172	Restoration Ecology	02	22	24	54	1,2,3,4,5,6,7,9
		BTS 00192	Aquatic Ecology	02	22	24	54	1,2,3,4,5,6,7,9
		BTS 00202	Biodiversity Conservation and Management	02	22	24	54	1,2,3,4,5,6,7,9,10
		BTS 00212	Science Research Methodology	02	30	-	70	1,2,3,6,7,8,9,11
		BTS 00272	Experimental Designs and Analysis	02	22	16	62	1,2,3,4,6,8,11
		BLS 00261	Seminar – Applied Biology	01	-	-	50	6,8,10,11
		BLS 00522	Industrial Training – Applied Biology	02	-	-	200	5,6,9,10,11
		BLS 00536	Research Project - Applied Biology	06	-	-	800	6,9,10,11
Total number of credits			52					
Min	Minimum number of credits required			46				

Table 3: Course units (of level 3 and 4) offered for the Honours degree programme inApplied Biology

* Teaching learning methods: 1 – Lecture, 2 - Tutorial discussion, 3 - Group discussion, 4 - laboratory exercise, 5 - Field visit/work, 6 - Individual Assignment/Project, 7 - Group Assignment/Project, 8 - Case study, 9 - Report writing, 10 – Presentation, 11 - Problem based learning.

10. DETAILED SYLLABI

DLS 00011. Allillar DI	ceeing
Course Code	BLS 00011
Course Title	Animal Breeding
Credits	1 Credit
Compulsory/optional	Compulsory
Aims	1. To impart knowledge on reproductive systems, genetic basis of breeding and scientific principles of conventional and molecular breeding techniques on increased yields, disease resistance, hardiness and appearance of livestock
Work load (notional hrs.)	11 hrs lectures, 12 hrs laboratory and 27 hrs self-work
Learning outcomes	 On successful completion of the course the students will be able to: 1. Recognize the genetic and environmental interactions on production traits. 2. Demonstrate the understanding of scientific principles of inbreeding and cross breeding on the production traits of livestock. 3. Identify conventional and modern breeding techniques in the enhancement of livestock.
Course Content	Traits of economic importance of dairy and beef cattle. Measurements, correlation among production traits; genetics and environmental interaction; selection and response to selection; genetic defects; inbreeding; cross breeding; use of reproductive technologies in breeding, molecular breeding, QTL mapping, marker assisted selection.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

BLS 00011: Animal Breeding

Recommended texts:

- 1. Quantitative Genetics with Special Reference to Plant and Animal Breeding (1996) Ralph E. Comstock, Wiley-Blackwell; 1st edition.
- 2. Breeding plants and animals (2009) W. M. Willet Martins., Cornell University Library.

	asbandi y
Course Code	BLS 00021
Course Title	Animal Husbandry
Credits	1 Credit
Compulsory/optional	Compulsory
Aims	1. To impart knowledge on scientific principles in animal physiology,
	behavior and bioethics.
	2. To develop skills in breeding, data handling and veterinary
	analytical techniques.
	3. To provide exposure to applied aspects of animal business,
	animal industry and animal husbandry with insight into
	conservation and integrated health management.
Work load (notional hrs.)	11 hrs lectures, 12 hrs laboratory and 27 hrs self-work
Learning outcomes	On successful completion of the course the students will be able to:
	1. Recognize basic concepts in animal nutrition, animal physiology,
	behavior and bioethics.
	2. Identify the aspects of animal business practice, animal industry and land-based business management.
	3. Recognize the concepts in animal health and welfare, integrated health management and epidemiology of diseases.

BLS 00021: Animal Husbandry

	4. Demonstrate understanding of the practical skills in the areas of
	breeding, data handling and basic laboratory and veterinary analytical
	techniques.
Course Content	Introduction, Exotic and domestic animals, basic concepts in animal
	nutrition, animal psychology, applied animal health and welfare, applied
	aspects of animal business practice, animal industry and trade, behavior
	ecology, breeding, conservation and management. integrated health
	management; bioethics; epidemiology of disease; data handling; Animal
	adaptation land-based business management; applied animal husbandry,
	Basic laboratory and veterinary analytical techniques.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%
	•

- 1. A text book of Animal husbandary (1991) GC. Banerjee, Oxford and IbH.
- 2. Textbook of Animal Husbandry (2012) MK. Rai, Oxford Book Company.
- 3. Textbook of Animal Husbandry & Livestock Extension (3rd Revised & Enlarged) (2012) P. Mathialagan, Int. Book Distributing Co.

Course Code	BLS 00032
Course Title	ADVANCED PARASITOLOGY AND VECTOR BIOLOGY
Credits	2 Credits
Compulsory/optional	Optional
Aims	1. To give students a sound insight into the biology of parasites and
	their control.
	2. To provide a solid foundation on the major vector groups, their
	behavior, transmission potential, and the application of modern
	techniques in their control.
Work load (notional hrs.)	22 hrs lectures, 16 hrs laboratory and 62 hrs self-work
Learning outcome	On successful completion of the course the students will be able to
	demonstrate knowledge of/skills in:
	1. cellular and humoral mechanisms involved in immunity, the
	immunology of the protozoan and helminth infections. T
	2. molecular basis of the life cycle of parasites, drug targets, and
	mechanisms of resistance.
	3 vectors and diseases carried by them lifecycles of medically important
	5. vectors and arthropode their behavior and transmission potential and
	habevioral pattern of blood fooding vootors
	behavioral pattern of blood recurs.
	4. molecular approaches of identification, taxonomy and application of
	modern techniques of vector control.
Course Content	ADVANCED PARASITOLOGY: Introduction, Mammalian immune
	system, Cellular and humoral mechanisms involved in immunity,
	Regulation of the immune response, In depth studies into the
	immunology of selected helminthes and protozoan infections, Molecular
	biology of Plasmodium – lifecycle, drug targets and mechanisms of
	resistance, vaccine strategies and proteomic approaches, Molecular

BLS 00032: ADVANCED PARASITOLOGY AND VECTOR BIOLOGY

	biology of Leishmania - virulence and drug resistance, Molecular
	biology of nematodes – lifecycles, chemotherapy, vaccine strategies;
	VECTOR BIOLOGY: Introduction, major vector groups in Medical
	Entomology (arthropods; insects), their behavior and transmission
	potential and the application of modern control techniques, Introduction
	to Culicidae and Anopheline Mosquitoes, Mosquito Reproduction,
	Molecular Insect Control, Blood Feeding in Vectors, Species Complex,
	New Approaches to Identification, Host Finding behavior, Molecular
	approaches to diagnosis and taxonomy & identification of vectors.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

- 1. Modern Parasitology: A Textbook of Parasitology 2nd Edn. (1993) FEG CoxWiley-Blackwell.
- 2. Parasitism: The Diversity and Ecology of Animal Parasites (2001) AO. Bush et al., Cambridge University Press.
- 3. Parasitology and Vector Biology, Second Edition (1999) WH. Marquardt et al., Academic Press.
- 4. Biology of Disease Vectors, Second Edition (Marquardt, Biology of Disease Vectors) (2004) Ed. WH. Marquardt, Academic Press
- 5. Vector Biology, Ecology and Control (2009) Ed. PW. Atkinson.

Course Code	BLS 00042
Course Title	APICULTURE
Credits	2 Credits
Compulsory/optional	Optional
Aims	To provide a broad overview of bee biology and behaviour, management for honey production, products of the hive, pests and enemies.
Work load (notional hrs.)	22 hrs lectures, 16 hrs laboratory and 62 hrs self-work
Learning outcome	On successful completion of the course the students will be able to demonstrate knowledge of/skills in:
	 History of bee keeping in South Asian Countries including Sri Lanka. Kinds of bees and characteristic features of their society.
	 Handling the bees. Queen rearing and requeening.
	5 Advance bee keeping techniques
Course Content	History of bee keeping and importance, kinds of bees and their society, anatomy and ife cycle of bee; Environment of bee keeping, artificial feeding, swarm and its controls; Increasing bee colonies, bee diseases; Handling bees: queen rearing and requeening, bee migration; Extraction of honey: processing, storing and packaging honey, advanced bee keeping techniques; modern trend in apiculture and problems of bee keeping in Sri Lanka.
Assessment criteria	

BLS 00042: APICULTURE

Continuous assessment	30%
End-semester examination	70%

- 1. Bee keeping in India (1994) G. K. Ghosh, Published by s. G. Nangia.
- 2. The bee-master's companion, and assistant Bonner, James 1 edition first published in 1789
- 3. Keeping bees (1983), Franklin H.
- 4. Bees & bee-keeping (1886) Frank Richard Cheshire (ebook).
- 5. Tips and Tricks in Beekeeping (1999) Franklin H.

BLS 00053: ECONOMIC MARINE BIOLOGY

Course Code	BLS 00053
Course Title	ECONOMIC MARINE BIOLOGY
Credits	3 Credits
Compulsory/optional	Optional
Aims	To provide a solid foundation on exploitation and management of
	marine living resources for economical gains
Work load (notional hrs.)	33 hrs lectures, 36 hrs laboratory and 81 hrs self-work
Learning outcome	On successful completion of the course the students will be able to
	demonstrate knowledge of/skills in:
	1. proper management of exploitation of living resources to ensure
	continuous supply to meet increasing demands.
Course Content	AQUACULTURE & CONSERVATION: Aquaculture of marine
	organisms, Principles of Marine Eco Physiology, Marine Biodiversity
	Conservation practices, Principles of sustainable development &
	Fisheries management; VALUE ADDITION TO SEA FOOD:
	Preserving fish as food or specimens, Methods of food analysis, Sea
	Food & Human Nutrition, Biologically active fish products, Sea Food
	safety, regulations & quality control; MARINE ORNAMENTAL FISH
	AND OTHER ORGANISMS AND ITS TRADE: Aquarium &
	Ornamental organisms, Rearing of marine aquarium fish, Aquarium fish
	trade.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

Recommended texts:

- 1. Aquaculture 2nd Edn. Ed. John Lucas* and Paul C Southgate (School of Biological Sciences, James Cook University, Australia).
- Seafood Processing: Adding Value Through Quick Freezing, Retortable Packaging and Cook-Chilling (Food Science and Technology) (2005) Ed. Vazhiyil Venugopal, Blackwell CRC Press.
- 3. Marine Ornamental Species: Collection, Culture and Conservation (2008) JC. Cato and CL. Brown, John Wiley & Sons.
- 4. From Ocean to Aquarium: The Global Trade in Marine Ornamental Species (2003) C. Wabnitz et al., UNEP/Earthprint

BLS 00063: MARINE BIORESOURCES AND MANAGEMENT

Course Code	BLS 00063
Course Title	MARINE BIORESOURCES AND MANAGEMENT
Credits	3 Credits
Compulsory/optional	Optional
Aims	To provide insight into the principles of marine ecology,
	production, fisheries industry and contemporary issues.
Work load (notional hrs.)	33 hrs lectures, 36 hrs laboratory and 81 hrs self-work
Learning outcome	On successful completion of the course the students will be able to
	demonstrate knowledge of/skills in:
	1. biology of and factors determining the distribution & abundance of
	marine food organisms.
	2. interactions between marine communities and the flow of energy and
	materials through them
	materials anough menn
	3. the effects of human induced changes in climate and ecosystems on
	marine organisms.
	4. the history of development of ocean technology (techniques used to
	locate, survey and assess marine bio resources) and its use in fisheries
	and management of marine environment.
Course Content	MARINE ECOSYSTEMS: Distribution & abundance of marine food
	organisms, Food Chains, Mineral recycling, Primary and secondary
	production, Population dynamics of fish species, Ocean circulation,
	Global Environmental Change & Marine Eco Systems; MARINE PRODUCTION: Food & feeding mechanisms of fishes Metabolism &
	Biochemistry Predators and competitors Parasitic relationships &
	diseases Growth & abundance Reproduction development life cycle
	& life span: MARINE RESOURCE MANAGEMENT: Introduction to
	a me span, which is Kester and the matrix of Marine Pollution &
	Bioremediation Coastal resource management MARINE FISHERIES:
	Introduction: Efficient allocation- Biological dimension Static efficient
	sustainable vield. dynamic efficient sustainable vield:
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

- 1. Dynamics of marine Ecosystems-biological &physical interactions in the oceans (1991) KH.Mann and JRN. Lazier, Blackwell
- 2. Marine Production Mechanisms (2009) MJ. Dunbar, Cambridge University Press
- 3. Ecosystem-Based Management for the Oceans (2009) Island Press

Course Code	BLS 00072
Course Title	NATURAL RESOURCE MANAGEMENT
Credits	2 Credits
Compulsory/optional	Optional
Aims	to provide students a broad view on basics and approaches on
	effective sustainable management of natural resources.
Work load (notional hrs.)	30 hrs. of lectures and 70 hours of self work

BLS 00072: NATURAL RESOURCE MANAGEMENT

Learning outcome On successful completion of the course the students will be able to demonstrate knowledge of/skills in: how basic economic theory can be used to understand and analy natural resource utilization. the relationship between human activity and the world's natural resources analyze and understand "real world" natural resource issues, wit Lankan perspective. Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	ze h a Sri non-
demonstrate knowledge of/skills in: 1. how basic economic theory can be used to understand and analy natural resource utilization. 2. the relationship between human activity and the world's natural resources 3. analyze and understand "real world" natural resource issues, wit Lankan perspective. Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	ze h a Sri non-
1. how basic economic theory can be used to understand and analy natural resource utilization. 2. the relationship between human activity and the world's natural resources 3. analyze and understand "real world" natural resource issues, wit Lankan perspective. Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	h a Sri non-
natural resource utilization. 2. the relationship between human activity and the world's natural resources 3. analyze and understand "real world" natural resource issues, wit Lankan perspective. Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	h a Sri non-
2. the relationship between human activity and the world's natural resources 3. analyze and understand "real world" natural resource issues, wit Lankan perspective. Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	h a Sri
2. the relationship between human derivity and the world's natural resources 3. analyze and understand "real world" natural resource issues, wit Lankan perspective. Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	h a Sri non-
resources 3. analyze and understand "real world" natural resource issues, wit Lankan perspective. Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	h a Sri non-
3. analyze and understand "real world" natural resource issues, wit Lankan perspective. Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	h a Sri non-
Lankan perspective. Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	non-
Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	non-
Course Content INTRODUCTION: Classification of resources- Renewable, renewable; ALLOCATION OF DEPLETABLE AND RENEW	non-
renewable; ALLOCATION OF DEPLETABLE AND RENEW	
	ABLE
RESOURCES: Introduction: Resource taxonomy: DEPLET	ABLE
NON RECYCLABLE ENERGY RESOURCES: OIL, GAS, C	COAL:
Optimal extraction, Oil: The Cartel problem, Natural gas: Price co	ntrols;
RECYCLABLE RESOURCES: MINERALS: Optimal extr	action:
REPLENISHABLE BUT DEPLETABLE RESOURCES: W/	ATER
Introduction The efficient allocation of scarce water- surface	water
ground water: REPRODUCIBLE PRIVATE — PROP	ERTY
RESOLINCES: AGRICULTURE: Introduction Global sc	arcity
STORABLE RENEWABLE RESOLINCES: FORESTS: Introdu	iction:
Efficient management: Special attributes of timber resource	. The
biological dimension. The Economics of forest harv	esting:
RENEWABLE COMMON PROPERTY RESOURCES: PROP	ERTY
RIGHTS, EXTERNALITIES AND ENVIRONMENTAL PROBI	EMS:
Property rights and efficient market allocations- Producer su	urplus,
Scarcity rent, Externalities as a source of market failure- C	oncept
introduced, Types of externalities, Public goods.	-
Assessment criteria	
Continuous assessment 30%	
End computer examination 70%	

- 6. Environmental and Natural Resource Economics (2008) T. Titenberg, Pearson Education, USA.
- 7. Natural Resource and Environmental Economics (1999) T. prato. Wiley-Blackwell, UK.
- 8. Natural Resource Economic Notes and Problems (1987) JM Cornard and CW Clark, Cambridge Univ. Press.
- 9. Conservation of Biological Resources (1998) EJ. Milner- Galland and R Maie, Willey-Blackwell.

D1000073-1LAN11	AIHOLOGI
Course Code	BTS 00073
Course Title	Plant Pathology
Credits	3 Credits
Compulsory/optional	Compulsory
Prerequisites	BTS 00052
Aims	To equip students with knowledge and skills to develop and implement
	disease management strategies for crop plants.
Work load (notional hrs.)	30 hrs lectures, 45 hrs laboratory and 75 hrs self work
Learning outcome	On successful completion of the course the students will be able to:
	1. Learn living, non-living and other causes of disease or disorder in plants
	(Etiology)

BTS 00073 - PLANT PATHOLOGY

	 Understand mechanism of disease development i.e. processes of infection and colonization of the host by the pathogen. (Pathogenesis) Comprehend the interaction between the causal agent and the diseased plants in relation to environmental conditions. (Epidemiology) Develop management systems of the diseases and reduce losses caused by them. (Control/ Management)
Course Content	Review of major groups of plant pathogens; Disease development in plants: Plant resistance to infection; Introduction to disease triangle; Principles of crop loss assessment; Principles and strategies for designing disease management operations; Methods that reduce efficiency of inoculum; Disease transmission and vectors; Biological control strategies; Cultural control methods; Green house cultural control strategies; Field crops control strategies; Introduction to molecular plant pathology.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

- 1. Agrios, G.N. (1997). Plant Pathology. 7th Edition. Academic Press, New York.
- 2. Pandey B.P. (1994) A Textbook of plant. Pathology: pathogen and plant disease.
- 3. D. Gareth Jones, (1987). Plant pathology: principles and practice Open University Press
- 4. Pathak, V.N; Khatri, N.K; Pathak, Manish. (2003). Fundamentals of plant pathology, Agrobios, Jodhpur.

Course Code	BTS 00092
Course Title	Enzymology
Credits	2 Credits
Compulsory/optional	Compulsory
Aims	To deliver fundamental knowledge on classification, structure, mechanism, and related application of enzymes. Basic concepts of enzymology including designing artificial enyzmes will be introduced to students.
Work load (notional hrs.)	22 hrs lectures, 16 hrs laboratory and 62 hrs self work
Learning outcome	 On successful completion of the course the students will be able to: Classify enzymes from their E.C. numbers and structures Comprehend structural enzyme-substrate relationship and binding equilibria Interpret inhibition and activation mechanisms of enzymes Learn components of artificial enzymes, requirements for their design Discuss the application of enzymes in different fields.
Course Content	Background on Enzymology; Chemical bonds/reactions and classification of enzymes; Structural components of enzymes; Enzyme- substrate equilibria; Effect of temperature pH etc. on enzyme activity, Kinetics of enzyme-substrate reactions; Chemical mechanisms in enzyme catalysis; Experimental measures of enzyme activity; Inhibitors: Reversible, tightly bound, time dependent; Enzyme reactions with multiple substrates; applications of enzymes, modeling enzymes and artificial enzyme synthesis.
Assessment criteria	

BTS 00092 - ENZYMOLOGY

Continuous assessment	30%
End-semester examination	70%

- 1. John R. Whitaker (1994) Principles of enzymology for the food sciences, CRC press.
- 2. Bisswanger, Hans (2012) Practical enzymology Wiley-VCH Verlag GmbH & Co. KGaA.
- 3. Devasena, T. (2010) Enzymology, Oxford University press, India.

BTS 00102 – BIOINFORMATICS Course Code BTS 00102 **Course Title Bioinformatics** Credits 2 Credits Compulsory/optional Compulsory To give students the knowledge of and the competence in use of Aims bioinformatical methods central to conduction of molecular biological research projects. 22 hrs lectures, 16 hrs laboratory and 62 hrs self work Work load (notional hrs.) Learning outcome On successful completion of the course the students will be able to: 1. Explain which type of data is available from the most common protein sequence and structure databases (uniprot, genebank, Protein Data Bank, CATH). 2. Explain the theories underlying the most common methods for sequence searches and sequence alignments, and in particular explains the principle and main steps for pairwise and multiple sequence alignments; 3. Explain and is able to apply the main steps of dynamic programing for/to simple alignments of short sequences; 4. List methods to uncover structure-function relationship in proteins and explains their underlying principles; 5. Explain the principles of computational methods for the prediction of secondary structure elements from protein sequence, prediction and modeling of three-dimensional protein structures (homology modeling, threading and ab initio methods). 6. Select and apply the most appropriate bioinformatics sequence or structure database to retrieve or search data given a specific question in molecular biology; 7. Select and apply the most appropriate method for aligning sequences, visualizing and analyzing protein structures, predicting secondary structure elements and modeling protein structures from sequence. **Course Content** Introduction: need, development, potentials Definitions. and applications, Genomics, Proteomics, pattern recognition and prediction, sequence-structure deficit; molecular biological information resources: Nucleic acid and protein sequence databases, specialized databases, links and integrated databases; Protein information resources: Secondary databases, composite protein sequence and pattern databases, protein structure databases; Bioinformatics resource providers and their functions: European Molecular Biology Network (EMBnet) and National Center for Biotechnology Information (NCBI), submission of DNA sequences to the data bases, their accuracy and use of databases; DNA information resources: DNA sequence analysis, cDNA and Expressed Sequence Tags (ESTs), Analysis and interpretation of ESTs, sequence editing, assembling, sequence alignment and data matrices,

BLAST.

relationship

analyses

of

of

Query sequences,

similarity searches on sequence databases using the data mining tool

sequence-structure-function-phylogenetic

making evolutionary

trees;

	Bioinformatics in pharmaceutical industry: Human genome project and medically relevant genes, identification of therapeutic and vaccine targets, structure-based drug design and drug discovery. Regulation of bioinformatics exchanges on endemic species
Assessment criteria	bioinformatics exchanges on endemic species.
Continuous assessment	30%
End-semester examination	70%

- 1. Mount, David W. (2001) Bioinformatics: sequence and genome analysis 2nd Edn., Cold Spring Harbor Laboratory Press;.
- 2. Krane, Dan E; Raymer, Michael L. (2003) Fundamental concepts of Bioinformatics, San Francisco : Benjamin Cummings.
- 3. Lesk, Arthur M. (2006) Introduction to bioinformatics, Oxford University Press, Inc. New York, NY, USA
- 4. Kumar, Santosh. (2017) Crop breeding: bioinformatics and preparing for climate change 1st Edn. Apple Academic Press.

Course Code	BTS 00112
Course Title	Analytical techniques
Credits	2 Credits
Compulsory/ Optional	Compulsory
Aims	 To develop knowledge in different types of plant and soil analytical techniques To make students familiarize with different apparatus used in plant
	analysis
	 To develop knowledge in identifying the features advantages and disadvantages of different methods
Work load (notional hrs.)	22 hrs lectures, 24 hrs laboratory and 54 hrs self work
Learning outcome	On successful completion of the course the students will be able to:
	1. Identify suitable analytical methods for a particular purpose
	2. Use different techniques/apparatus to carryout experiments
	3. Distinguish between advanced analytical techniques and their usage
Course content	Laboratory organization and safety; soil and plant sampling and processing, physical and chemical analysis, major equipments used, their operation and maintenance; Use of radioisotopes in biological research, Principles and techniques of Chromatography,
	Spectrophotometry and Electrophoresis, Laboratory exercises based on
	above topics.
Continuous assessment	30%
End semester examination	70%

BTS 00112: ANALYTICAL TECHNIQUES

Recommended texts:

- 1. Wilson, K. and Walker, J. M. (Eds.) (1994). Principles and techniques of practical biochemistry (4th edition). Cambridge University Press, UK.
- 2. Margaret E. Farago (Eds.) (2008) Plants and the Chemical Elements: Biochemistry, Uptake, Tolerance and Toxicity, https://www.wiley.com/enus/
- 3. Kurt Hostettmann et al., (Eds.) (2014) Handbook of Chemical and Biological Plant Analytical Methods, https://www.wiley.com/enus/

BTS 00122 – POST-HARVEST TECHNOLOGY OF FRUITS, VEGETABLES AND GRAINS

Course Code	BTS 00122
Course Title	Post – Harvest Technology of Fruits, Vegetables and Grains
Credits	2 Credits
Compulsory/optional	Compulsory
Aims	To provide adequate knowledge and skills on post-harvest handling,
	processing and preservation of fruits, vegetables and grains.
Work load (notional hrs.)	20 hrs lectures, 20 hrs laboratory and 60 hrs self work
Learning outcome	On successful completion of the course the students will be able to:
	1. Explain the causes of post harvest food losses and the prevention
	measures.
	2. Callyout post harvest factors affecting the post harvest life and quality
	aspects.
	4. Carryout fresh produce handling appropriately: maturity determination,
	harvesting, grading, packaging, treatment and storage.
	5. Survey the storage practices in the area and recommend for better storage
	techniques.
	6. Explains various methods of food processing and preservation.
	7. Carry out processing and preservation of vegetables and fruits.
Course Content	Introduction to Postharvest Technology; Post harvest losses of
	agricultural products; Biological/physiological and environmental
	factors affecting shelf life; Environmental factors influencing
	Deterioration; Post narvest technology procedures; Supplements to temp & humidity management: Maturation and Maturity Indices:
	Harvesting systems: Preparation for fresh market: Preparation for
	nacking systems, reparation for nesh market, reparation for nacking: Storage systems: Post harvest pests & diseases of selected
	commodifies: Food processing background: Food preservation
	principles and processes of fruit vegetable and grain/cereal products:
	Food packaging I aboratory exercises and field/industrial visits based
	on above
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%
End-semester examination	/0%

- 1. Narayanasamy, P. (2006) Postharvest pathogens and disease management 1st Edn., Wiley-Interscience.
- 2. Kader, Adel A. (2002) Postharvest technology of horticultural crops, University of California Agriculture and Natural Resources.
- 3. Thompson, A.K. (2015) Fruit and vegetables; vol.1 : harvesting, handling and storage Wiley-Blackwell.,
- 4. Chakraverty, Amalendu; Singh, R. Paul. (2014) Postharvest technology and food process engineering, CRC press.

Course Code	BTS 00132
Course Title	Plant Tissue Culture
Credits	2 Credits
Compulsory/optional	Compulsory

BTS 00132 - PLANT TISSUE CULTURE

Aims	To provide knowledge and skills on techniques in plant tissue culture, in
	vitro conservation, protoplast culture and micropropagation.
Work load (notional hrs.)	25 hrs lectures, 15 hrs laboratory and 60 hrs self work
Learning outcome	On successful completion of the course the students will be able to:
_	1. Explain the concepts of plant tissue culture and transformation.
	2. Demonstrate the basic and advanced tissue culture techniques.
	3. Establish, maintain and subculture many types of plant tissue cultures
	(axenic shoot cultures, callus cultures, embryogenic callus cultures, cell
	suspension cultures), micro propagate their plants and most of all master
	aseptic technique to produce microbe/microorganisms-free cultures.
	4. Demonstrate how to initiate and perform plant tissue culture research with
	a crop of choice.
Course Content	Introduction: Definition and technology; Plant cell & tissue culture
	techniques: A brief description, role of plant hormones, aseptic
	techniques, potential applications of organ culture, meristem culture,
	anther/pollen culture, callus & suspension cultures and protoplast
	culture; Plant propagation; Regeneration through meristem and callus
	cultures; Somatic embryogenesis: production, preservation and use of
	somatic embryos as propagules; Artificial seeds and automation of
	somatic embryo production: Principles, technology of automation and
	the application; Embryo culture; Haploid plant production;
	Cryopreservation: Storage of germ plasm: Protoplast culture: Somatic
	hybridization: Induction & utilization of somatic variants: Secondary
	metabolite production through cell cultures. Principles and the
	technology, pharmaceuticals, pigments, other natural products and
	beverage production; Commercialization of tissue culture technology:
	Concept of commercialization and the need, design of typical tissue
	culture laboratory and its management.
Assessment criteria	······································
Continuous assessment	30%
End-semester examination	
Lina bernebter examination	

- 1. M.K. Razdan. (1993) An Introduction to plant tissue culture, Intercept.
- 2. S. Narayanaswamy. (1994) Plant cell and tissue culture, Tata McGraw-Hill Education.
- 3. Giano, Robert N and Gray, Dennis J. (1999) Plant tissue culture concepts and laboratory exercises 2nd Edn., CRC Press.
- 4. Pareek, L.K. and Swarnkar, P.L. (2001).Trends in plant tissue culture and biotechnology, Agro Botanical Publishers
- 5. Smith, H.Roberta. (2012) Plant tissue culture: Techniques and experiments, Academic Press.

Course Code	BTS 00142
Course Title	Plant Breeding
Credits	2 Credits
Compulsory/optional	Compulsory
Aims	To provide an understanding of genetic manipulation of sexually and
	asexually propagated crops with an emphasis on sustainable
	agricultural production.
Work load (notional hrs.)	22 hrs lectures, 16 hrs laboratory and 62 hrs self work
Learning outcome	On successful completion of the course the students will be able to:
	1. Formulate breeding strategies that would lead to an increase in
	productivity and profitability in agriculture and horticulture.
	2. Discuss the use of plant breeding in developing sustainable agricultural

BTS 00142 - PLANT BREEDING

	production systems that satisfy the increasing demand for food, fibre and plant based industrial products.
Course Content	Features of flowering plants and their products; variation and selection; origins of agriculture; Crop plants and their wild relatives, centres of origin and diversification of crop plants. Mating systems in crop plants; continuous versus discontinuous variation traits; heritability of economically important traits, genetics of self and cross-pollinated crops; breeding methods with self and cross-pollinated crops; design of field experiments; genetics of disease and insect pest resistance in crop plants; induced mutations and chromosome manipulation in crop improvement; genetic diversity in crops and gene banks; seed production industry; crop improvement through genetic engineering; general breeding problems associated with regional crops. Laboratory/field exercises based on above.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

- 1. Gupta.S.K. (2008) Plant breeding: Theory and techniques, Agriobios, Jodhpur.
- Acquaah, George. (2012) Principles of plant genetics and breeding (2nd edn.), John Wiley & Sons.
- 3. Sai Prasad, S.V. et. Al., (2016) Agri-facts: plant breeding: model papers, short notes, long answer, New Vishal Publication
- 4. Gupta, S.K. (2010) Practical plant breeding. Agribios, India.
- 5. Kumar Santosh. (2017) Crop breeding: bioinformatics and preparing for climate change, Apple Academic Press.

ртс	00152	ENVIDON	MENTAT	MICDODIOLOC	v
B12	00152 .	- ENVIRUN	WIENIAL	MICKUBIULUG	I

Course Code	BTS 00152
Course Title	Environmental Microbiology
Credits	2 Credits
Compulsory/optional	Compulsory
Aims	 To provide an overview of physiology and ecology of microbes in natural environments and their impact on human life To provide insight into exploiting microbial activities to manage environmental health
Work load (notional hrs.)	22 hrs lectures, 16 hrs laboratory and 62 hrs self work
Learning outcome	 On successful completion of the course the students will be able to: 1. Describe/discuss microbial structures/functions and factors affecting microbial activities. 2. Relate/apply microbial ecological principles to solve environmental problems. 3. Describe/discuss/compare different microbial techniques used in
	pollution treatment.
Course Content	Microbial physiology: Microbial cell structure and function, microbial metabolism, effect of environmental conditions on growth, microbial environments, microbial ecology: interactions, Liebig's law of the minimum and Shelford's law of tolerance, microbial strategies under stress. Waste treatment: Solid waste: composition, problems, treatment techniques, microbiology and methods of composting. Liquid wastes:

	types of pollutants, sewage treatment process, fixed film systems, suspended cell systems, activated sludge process, modifications to
	remove N and P, aerobic and anaerobic digestion of sludge; tertiary
	treatment. Microbes and xenobloucs: recalcurants, persistence and
	biomagnification, biodegradation. Bioremediation: environmental
	modification, inoculation, enzyme technology, soil bioremediation
	techniques, bioremediation of air pollutants. Novel methods of pollution
	control and microbes in mineral recovery. Toxigenic microorganisms
	(cyanobacteria and dinoflagellates), their occurrence in water bodies of
	Sri Lanka and strategies to minimize their proliferation. Laboratory
	exercises and field visits based on above.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

- 1. RM Atlas and R Bartha (2000) Microbial ecology: Fundametals and applications, 4th Edn. Addison Wesley Longman, Inc.
- 2. I.L Pepper and CP Gerba. (2015) Environmental microbiology, Academic Press, USA.
- 3. S McEldowny, DJ. Hardman, S. Waite (1993) Pollution: Ecology and Biotreatment, Longman Scientific and Technical.
- 4. FB. Metting. Jr., Ed. (1993) Soil Microbial Ecology: Applications in Agricultural and Environmental Management, Marcel Decker, Inc.
- 5. GM Masters (1991) Introduction to environmental engineering and science Prentice –Hall International, Inc.
- 6. S.A. Kulasooriya (2016) Toxigenic freshwater cyanobateria of Sri Lanka, Cey Jour. Sci.

Course Code	BTS 00162
Course Title	Industrial and Food Microbiology
Credits	2 Credits
Compulsory/optional	Compulsory
Aims	1. To provide an overview of biological basis and processes of
	fermentation technology used in obtaining microbial products in
	commercial scale.
	2. To develop an in-depth knowledge of the microbiology of food,
	food-borne diseases, food spoilage and preservation
Work load (notional hrs.)	22 hrs lectures, 16 hrs laboratory and 62 hrs self work
Learning outcome	On successful completion of the course the students will be able to:
	1. Describe/discuss main steps and processes used in microbial
	products industry
	2. Discuss microbiological principles behind different stages in fermentation industry
	3 Explain microbial interactions in food their significance and factors
	influencing their growth and survival.
	4. Discuss the microbiology of different types of food commodities
	5. Demonstrate skills of microbiological analysis of food.
Course Content	Industrial microbiology: introduction and history, significance of
	microbes, categories of microbial products, industrially important
	microbes, growth & nutrition, growth kinetics, microbial metabolism &
	fermentation; Upstream Processing: strain suitability and techniques of
	selection, fermentation media, crude media, defined media, fermentation
	systems, design and control, solid substrate fermentation and methods;

BTS 00162 - INDUSTRIAL AND FOOD MICROBIOLOGY

	Downstream processing: unit operations, factors determining unit
	operation selection.
	Food microbiology: Introduction, Food Spoilage and General Principles
	Underlying Spoilage, Intrinsic Parameters Extrinsic Parameters, implicit
	and processing factors; microbial spoilage of milk, meat, fish and plant
	products; sources of microorganisms in foods (contamination), factors
	influencing microbial growth, changes caused; principles and
	techniques of food preservation; Food Borne Infections/ Intoxications;
	Laboratory exercises and field/industrial visits based on above.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

Recommended Readings:

- 1. MJ Waites et. al., (2004) Industrial Microbiology- An Introduction, Blacwell Science.
- 2. G. Reed, Ed., (1999) Industrial Microbiology 4th Edn. CBS India.
- 3. GJ. Banwart, (1987) Basic Food Microbiology CBS India.
- 4. WC. Frazier and DC. Westhoff (1988) Food Microbiology 4th Edn., McGraw-Hill Co.

Course Code	BLM 00172
Course Title	Restoration Ecology
Credits	2 Credits
Compulsory/optional	Compulsory
Aims	4. To impart knowledge on scientific principles and applications
	in the area of restoration ecology
	5. To develop skills in retrieving information about restoration
	ecology critical analysis and evaluation and communicating with a
	variety of audiences in written and spoken forms
Work load (notional hrs.)	22 hrs lectures, 24 hrs laboratory and 54 hrs self work
Learning outcome	On successful completion of the course the students will be able to:
_	1. Recognize local ecosystems and describe the theoretical aspects of
	restoring different types of ecosystems.
	2. Apply content knowledge to real-world settings and contexts by
	developing and writing a restoration plan and preparation of a public
	presentation.
	3. Recognize current issues in restoration ecology, engage in research and
	critical analysis.
	4. Demonstrate understanding of the practical aspects of restoring
	ecosystems, working with communities and producing sound restoration
	plans through engagement with the community partner.
Course Content	Introduction to restoration ecology; ecosystem functioning, ecological
	relationships at various spatial scales as they apply to restoration,
	keystone species, invasive species management, reclamation of
	contaminated sites, restoration of various types of ecosystems (e.g.
	forest, degraded grasslands, wetland, riverine vegetation, coastal
	ecosystems), value of ecosystem services, financial and practical
	considerations in ecological restoration projects.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

Recommended texts:

1. Andre F. Clewell, James Aronson (2013) Ecological Restoration, 2nd Edn: Principles, Values, and Structure of an Emerging Profession, Island Press.

 Donald A. Falk, Margaret A. Palmer, Joy B. Zedler, Richard J. Hobbs. Eds. (2006) Foundations of Restoration Ecology (The Science and Practice of Ecological Restoration Series) 1st Edn. Isand Press.

Course Code	BLM 00192
Course Title	Aquatic Ecology
Credits	2 Credits
Compulsory/optional	Compulsory
Aims	 To impart knowledge on the major elements of marine and freshwater habitats, the biology and their functions To expose to various aquatic animals, algae, and macrophytes in freshwater and marine habitats of sri lanka. To equip to identify and assess problems threatening aquatic ecosystems
Work load (notional hrs.)	22 hrs lectures, 24 hrs laboratory and 54 hrs self work
Learning outcome	On successful completion of the course the students will be able to:
Learning outcome	1 Explain major elements of aquatic habitats
	 Explain major elements of aquate montais. Explain aspects of ecological functioning of freshwater and marine.
	systems.
	3. Explain methods and controversies regarding the exploitation of aquatic
	resources.
	4. Explain environmental threats to aquatic systems.
	5. Identify some of the more common aquatic species.
	6. Comprehend, summarize and critique primary scientific literature.
Course Content	Water as the ideal medium for life, Types of fresh water and the origin of lake basins: Lentic and lotic water, Distribution of aquatic ecosystems in Sri Lanka: coastal ecosystem, inland water ecosystem and hydro-electric and irrigation schemes, Abiotic factors of the Aquatic ecosystems: Physical factors and chemical factors, Biotic component of the Aquatic ecosystem: Ecological classification; Taxonomic classification, Introduction to aquatic plants; microalgae, seaweeds, and vascular aquatic plants with an emphasis on their unique habitats; morphological and physiological adaptations to the aquatic environment; Primary Productivity, planktons-the power house of ocean food webs, adaptation of aquatic organisms, patterns of distribution and succession in rivers, lakes and wetlands; impacts on aquatic systems, Economically important aquatic organisms in Sri Lanka, Laboratories include use of field equipment, field research
	techniques, and identification of aquatic organisms, including protozoa,
	one required field trip off campus.
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

BTS 00192 - AQUATIC ECOLOGY

Recommended texts:

- 1. Dodds, Walter and Matt Whiles. (2010) Freshwater Ecology: Concepts & Environmental Applications of Limnology 2nd Ed., Academic Press.
- 2. Alice Outwater (1996) Water: a natural history, Basic Books
- 3. Dodson, S. (2005) Introduction to Limnology, McGraw Hill Companies Inc. New York.
- 4. M. Dobson and C. Frid. (2009) Ecology of Aquatic Systems, Oxford University Press.
- 5. W. Lampert and U. Sommer. (2007). Limnoecology, Oxford University Press.
- 6. G. W. Prescott (1964) How to Know the Algae, An Illustrated Key. W. C. Brown
- 7. Dobson Michael, Frid Chris (2009) Ecology of aquatic systems, 2nd Edn., Oxford University Press
- 8. J. Kalff (2001) Inland Water Ecosystems: a textbook of Limnology, Prentice-Hall.

- 9. R.G. Wetzel (2001) Limnology Academic Press.
- 10. W. Lampert and U. Sommer, (2007) Limnoecology: The Ecology of Lakes and Streams, Oxford University Press.

Course Code	BTS 00202
Course Title	Biodiversity Conservation and Management
Credits	2 Credits
Compulsory/optional	Compulsory
Aims	 Develop knowledge on biodiversity conservation and management. To enable them to critically address the issues related to biodiversity and the environment and socio economic impacts. To provide students basic skills for goal oriented research in biodiversity conservation and management.
Work load (notional hrs.)	22 hrs lectures, 24 hrs laboratory and 54 hrs self work
Learning outcome	 Upon successful completion of this course, the student will be able to: 1. Understand key threats to biodiversity 2. Select appropriate techniques that can be used to achieve biodiversity conservation within reserves including control of pests of plants and animals, species translocations 3. Select techniques to conserve biodiversity outside reserves including retention of keystone structures, connectivity and corridors 4. Explain/describe key ecological concepts in ecosystem restoration 5. Identify key legislations relevant to biodiversity conservation 6. Critically analyse the fact that wildlife populations, man's actions and habitat are interconnected and dependent on each other. 7. Demonstrate the ability to apply concepts of experimental design and scientific method to solve management problems.
Course Content	Introduction to biodiversity: global and national biodiversity estimates; Techniques of measuring biodiversity; Loss of biodiversity; Threats to biodiversity including invasive species; Biodiversity Conservation: ex situ and in situ conservation strategies; sustainable management of biodiversity; IUCN categories for the conservation status of taxa, Red data book; key legislations available to conserve and manage biodiversity; priorities in conservation; indigenous knowledge in biodiversity; international conventions on Biodiversity, International trade and CITES, Ecotourism,. Biological diversity conservation in Sri Lanka
Assessment criteria	
Continuous assessment	30%
End-semester examination	70%

BTS 00202 - BIODIVERSITY CONSERVATION AND MANAGEMENT

Recommended texts:

- 1. Braun, C. (2005) Techniques for Wildlife Investigations and Management, 6th edn. Wildlife Society
- 2. Cauhley, G and Sinclair, R.E.A. (1994) Wildlife ecology and management. Blackwell Scientific Publications, Boston, MA.
- 3. Gaston, K. and Spicer, J. (2003) Biodiversity: an Introduction. Blackwell Science.
- 4. Gatson, J.G. and Spicer, J. I. (2004) Biodiversity: An introduction (2nd Edition), Blackwell Publishing, Oxford
- 5. Groombridge B. (1992), Global biodiversity: Status of the earth's living resources, Chapman andmHill, London.
- 6. Jensen, J.R. (2000) Remote sensing of the environment: An earth resource perspective. Prentice Hall, New Jersey
- 7. Kotwal P. C. (2002) Biodiversity conservation in managed forests and protected areas, Agrobios, India.

- 8. Kumar V. (2003) Biodiversity: Principles and Conservation. Agrobios, India
- 9. Lévèque, C., (1997) Biodiversity dynamics and conservation, Cambridege University Press,
- 10. New, T.R. (1995) An Introduction to Invertebrate Conservation Biology, Oxford University Press.
- 11. Robinson W.L. and E.G. Bolen. (2002) Wildlife Ecology and Management,, Pearson.
- 12. Schulze, E. D. and Mooney, H. A. (1994) Biodiversity and ecosystem function. Springer,
- 13. Soule, M.E. (1986) Conservation Biology; The science of scarcity and diversity, Sinauer Associates Inc, Sunderland, Massachusetts, USA

Course Code	BTS 00212	
Course Title	Science Research Methodology	
Credits	2 Credits	
Compulsory/ Optional	Compulsory	
Aims	 To develop knowledge on basic concepts of research and its methodologies To develop knowledge in identifying and defining appropriate research problems, formulating hypothesis, plan and conduct research and report and present research work. 	
Work load (notional hrs.)	30 hrs lectures and 70 hrs self work	
Learning outcome	 On successful completion of the course the students will be able to; Identify research problems, access and review literature, formulate hypothesis, Adopt appropriate experimental designs. Prepare research proposal and budget. Critically evaluate data, analyze and interpret. Write/present a report 	
Course content	Research design, Literature search and review, Scientific writing, Scientific presentation, Critical scientific review, Ethical issues	
End semester examination	70%	
Continuous assessment	30%	

BTS 00212: SCIENCE RESEARCH METHODOLOGY

Recommended texts:

Creswell, J. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches Vol. 4, SAGE Publications.

BTS 00272 - EXPERIMENTAL DESIGNS AND ANALYSIS

Course Code	BTS 00272
Course Title	Experimental Designs and Analysis
Credits	2 Credits
Compulsory/optional	Compulsory
Aims	1. Provide insight into the need for statistics.
	2. Develop skills in scientific experimentation and analysis.
Work load (notional hrs.)	22 hrs lectures, 16 hrs laboratory and 62 hrs self work
Learning outcome	On successful completion of the course the students will be able to;
	1. Apply appropriate experimental designs.
	2. Derive valid results from the scientific experiments.
	3. Apply statistical methods in analyzing data.
	4. Present the results of the findings of an experiment in scientific manner
	and make conclusions based on the results

Course Content	Principles of experimental designs, Completely Randomized Design, Randomized Complete Block Design, Latin Square Design, Mean separation procedures, Factorial experiments, Analysis of factorial experiments, Modifications to factorial experiments, Analysis of Covariance, Confounding in factorial experiments, Incomplete Block Designs.
Assessment criteria Continuous assessment End-semester examination	30% 70%

- 1. Thattil R.O (1999)., Design and Analysis of Experiments., PGIA.
- 2. Cochran WG & Cox GM (1957)., Experimental Designs, John Wiley & Sons, Canada.
- 3. Murray R.S & Larry J.S (1999)., Statistics (Third Edition), McGraw-Hill, Singapore.
- 4. Murray R.S, John S & Srinivasan R.A (2004)., Probability & Statistics, McGraw-Hill, Singapore.

Course Code	BLS 00261
Course Title	Seminar – Applied Biology
Credits	1 Credit
Compulsory/optional	Compulsory
Aims	1. To develop interest on current developments and applications of the
	subject area.
	2. To develop skills self-learning and oral communication.
Work load (notional hrs.)	50 hrs self work
Learning outcome	On successful completion of the course the students will be able to:
	1. Keep track on current developments in the subject area
	2. Gather knowledge/relevant data and organize.
	3. Prepare audiovisual aids for presentations.
	4. Convey a scientific message orally in an attractive and concise
	manner.
Course Content	Awareness lectures and discussions on presentation skills.
	An individual seminar should be presented on a topic, on an issue at the
	forefront, selected with the consent of the assigned supervisor.
Assessment criteria	
Presentation	80%
Viva	20%

BLS 00261: SEMINAR - APPLIED BIOLOGY

Course Code	L00522
Course Title	Industrial Training
Credits	2 Credits
Compulsory/optional	Optional
Aims	To expose students to real work of environment and gain knowledge
	and skills in work ethics, communication, management etc.
Work load (notional hrs.)	200 hrs self work (four weeks)
Learning outcome	On successful completion of the training the students will be able to:
	1. apply subject knowledge and skills to real work situations.
	2. work with responsibility, commitment and other good work
	habits.

BLS 00522 INDUSTRIAL TRAINING

	3. to write reports on technical works/projects.
	4. perform with self-confidence, strength, teamwork spirit, good
	communication skills etc.
Course Content	Working in some established subject relevant industry, institute, enterprise etc. either state or private full time for four weeks either continuously or staggered during semester end vacation periods, on a programme agreed by the Department and the host institute with the supervision of a senior academic from the department and an executive of the host institute
Assessment criteria	
log book	20%
Progress reports	20%
Presentation and viva	20%
Final report	40%

BLS 00536: RESEARCH PROJECT

Course Code	BLS 00536
Course Code	Descende Designet
Course little	Research Project
Credits	6 Credits
Compulsory/optional	Compulsory
Aims	To develop skills in research and scientific communication.
Work load (notional hrs.)	800 hrs self work (4-6 months)
Learning outcome	On successful completion of the course the students will be able to:
	1. Identifying research problem and critically review literature
	2. Experimental designing, laboratory/field activities, data collection,
	analysis and interpretation.
	3. Oral, written and visual communication/presentation.
	4. Planning, time management, collaborate with other researchers etc.
Course Content	An individual research project, of a duration of about 15 weeks, will be
	carried out under the supervision of a senior academic staff member of
	the department and a report should be submitted based on the work
	carried out in that research project. The project could also be a
	collaborative one with another department or with some other institute
	and in such cases there may be a co-supervisor from the collaborating
	department or institute.
Assessment criteria	
Project report	80%
Presentation and viva	20%